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Abstract 
Review on RET gene and protein, a membrane 

tyrosine kinase receptor involved in various 

cancers, including papillary thyroid carcinoma, lung 

cancer, breast cancer, colorectal cancer, salivary 

glands cancer, skin melanomas/spitz tumors and 

soft tissue sarcomas, but also in inherited diseases, 

including multiple endocrine neoplasia type 2, 

familial medullary thyroid carcinoma, familial 

pheochromocytoma predisposition, Hirschsprung 

disease, congenital central hypoventilation 

syndrome and renal hypodysplasia/aplasia 1. 
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Spitz tumors; Soft tissue sarcomas; Pediatric 

cancers. 

 

 

 

Identity 
Other names: HSCR1, MEN2A, MTC1, MEN2B, 

Hirschsprung disease 1, PTC, CDHF12, RET51, 

CDHR16 

HGNC (Hugo): RET 

Location: 10q11.21 

Local order: 

centromere <-- BMS1, LINC02623, LINC01264, 

MIR5100, RET, CSGALNACT2, RASGEF1A, 

FXYD4, HNRNPF, ZNF487  --> telomere 

DNA/RNA 

Transcription 

Transcript (hg38), including UTRs: 

chr10:43,077,069-43,127,504; Size: 50,436bp on 

strand +; coding region: chr10:43,077,259-

43,126,754 Size: 49,496 bp, according to UCSC. 

RET has at least 6 transcripts. In the 2 splice 

variants coding for a protein NM8020630 (19 

exons) and NM8020975 (20 exons). Exon nineteen 

is partly different: exon 19 Asp1014 - Phe1072: 

DYLDLAASTPSDSLIYDDGLSEEETPLVDCNN

APLPRALPSTWIENKLYGRISHAFTRF, versus 

exon 19 Asp1014 - Gly1063: 

DYLDLAASTPSDSLIYDDGLSEEETPLVDCNN

APLPRALPSTWIENKLYG and exon 20 Gly1063 

- Ser1114: 

MSDPNWPGESPVPLTRADGTNTGFPRYPNDS

VYANWMLSPSAAKLMDTFDS. 
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Figure 1: RET amino acids sequence with Cadherin-like, 

Cysteine-rich, Transmembrane and Protein kinase domains 
with activation loop and LDRE, DXD, GEGEFGK, HRD, and 

DFG motifs and tyrosines. 

Protein 

Description 
There are three protein isoforms with 9 (RET9; 

short isoform, 1072 amino acids), 43 (RET43; 

middle isoform, 1106 amino acids), or 51 amino 

acids (RET51; long isoform, 1114 amino acids) 

from different splicing in C term.  

RET is composed of an extracellular region (amino 

acids (aa) 29-635, coded by exons 1-10, and part of 

exon 11), a transmembrane region (aa 636-657, 

coded by part of exon 11), and a cytoplasmic region 

(aa 658-1114 or 1072, coded by part of exon 11, 

and exon 12-19 or 12-20) (Figures 1 and 2).  

RET has a Signal peptide (aa 1-28). RET contains a 

region of RET previously reported as having 

similarity to cadherins and named "cadherin 

domain" in databases (aa 168-272, coded by part of 

exon 3 and part of exon 4) and a bipartite protein 

kinase domain separated by a hinge (aa 805-812); 

(aa 724-1016, coded by part of exon 12, exons 13-

18, and part of exon 19).  

However, a detailed study shows that there are four 

cadherin-like domains (CLD): CLD1: aa 28-156 

(exon 2 and part of exon 3), CLD2 aa 166-272 (part 

exon 3 and part of exon 4), CLD3 aa 273-387 (part 

exon 4, exon 5 and part of exon 6), CLD4: aa 401-

516 (part exon 6, exon 7 and beginning of exon 8), 

with spacer sequences between CLD1 and CLD2 

and between CLD3 and CLD4 (Anders et al., 

2001).  

There is a cysteine-rich domain (CRD, aa 515-

634, coded by exons 8, 9, 10 and beginning of 

exon-11), and a calcium-binding sites (CA 

domain, aa 229-380, coded by part of exon 4, exon 

5 and part of exon 6). The cysteine- rich domain is 

important for receptor dimerization. The cadherin 

domain adopts a β -sandwich fold, and calcium-

binding sites are formed in between adjacent 

cadherin domains by the LDRE motif (aa 229-232) 

of CLD2 and the DXD motifs of CLD3 (aa 264-266 

and 300-302). Ca2+ binding is required for the 

interaction of RET with GDNF.  

Tyrosines: Tyrosine kinases usually have one or 

two tyrosines in the activation loop, in the case of 

RET there are two, Y900 and Y905, within the 

RDVYEEDSYVKRSQG peptide, both of which 

can be phosphorylated. Activation loop: Y905 is 

required for the transforming activity and signaling 

of RET-MEN2A mutations.  

The transforming activity of RET-MEN2B 

implicates Y864 or Y952. Y1062 is a multidocking 

site that interacts with a number of transduction 

molecules including SHC1, GRB2, FRS2, DOK4 / 

DOK5, IRS1 / IRS2, and PDLIM7. (Anders et al., 

2001; Kouvaraki et al., 2005).  

Other sites:   

- GEGEFGK glycine-rich loop: nucleotide-binding 

loop 731-737, binding ATP 

- K758: ATP binding site.  

- DFG 892-894 motif: magnesium-binding loop 

- R897 and R912: activation loop.  

- HRD motif (aa 871-874) is responsible for 

nucleophilic attack (kinases lacking the HRD 

arginine are not phosphorylated in the activation 

loop).  

Activation loop phosphorylation can counteract the 

positive charge of the arginine in the catalytic loop 

by the HRD motif.  

- Leucine rich: aa 11-22.  

Other remarkable sites according to Prosite:   

- Protein kinase C phosphorylation sites: aa 65 

(phosphoserine), 75 (phosphothreonine), 110 (S), 

131 (S), 159 (S), 173 (S), 224 (S), 295 (T), 328 (T), 

413 (S), 492 (T), 522 (S), 538 (T), 561 (S), 675 (T), 

811 (S), 819 (S)  
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Figure 2: RET gene and protein 

 

- cAMP- and cGMP-dependent protein kinase 

phosphorylation sites: 315 (T), 696 (S)  

- Casein kinase II phosphorylation sites: 104 (S), 

131 (S), 261 (T), 350 (T), 363 (S), 456 (T), 457 (T), 

564 (T), 670 (S), 729 (T), 765 (S), 836 (S), 847 (T), 

922 (S), 930 (T), 1022 (T), 1034 (S), 1055 (T), 

1078 (T)  

- Tyrosine kinase phosphorylation site 2: 1089-

1096: RypnDsvY  

- N-myristoylation sites (role in membrane 

targeting): 28, 74, 275, 446, 453, 506, 514, 535, 

550, 588, 601, 607, 810, 828, 830, 831, 1082  

- N-glycosylation sites: 98, 151, 199, 336, 343, 361, 

367, 377, 394, 448, 468, 554, 834, 975, 1092  

- Amidation site XGRK (protects from 
proteolysis): 884-887. 

Expression 

RET is particularly expressed in neural tissues 

(brain and autonomic nervous system: enteric, 

sympathetic, and parasympathetic), neuroendocrine 

cells, including thyroid C cells, adrenal medullary 

cells, parathyroid cells and in the developing 

kidney, but also in lung, digestive tract, adult 

kidney, female organs, male organs, skin, and blood 

apparatus. 

Localisation 

RET is localized predominantly in the plasma 

membrane and in the cytoplasm; RET is also 

localized in the nucleus, indicating that intact RET 

can translocate into the nucleus (Bagheri-Yarmand 

et al. 2015). RET staining shows strong signals in 

both the cytoplasm, Golgi apparatus and cell 

membrane, whereas Hirschsprung mutant RET 

shows less pronounced staining on the cell 

membrane and more closer to the 

nucleolus/endoplasmic reticulum (The Human 

Protein Atlas). 

Function 

Ligands: there are four possible ligands for RET: 

GDNF (glial cell line-derived neurotrophic factor), 

NRTN (neurturin), PSPN (persephin), and ARTN 

(artemin). A multimetric complex composed of 

RET, one of the four ligands above mentioned, and 

one of four different high affinity glycosyl-

phosphatidylinositol-anchored co-receptors, named 

GDNF family receptor-alpha GFRA 1 to 4.  

Co-receptors: the four RET ligands GDNF, 

NRTN, PSPN, and ARTN interact preferentially 

with GFRA1, GFRA2, GFRA3, and GFRA4, 

respectively. The ligand (e.g. NRTN) forms a 

homodimer with a cystine knot at its center and 

requires its co-receptor (e.g. GFRA2) to activate 

RET. The NRTN-GFRA2 complex is composed of 

a dimer of dimers with the NRTN homodimer at the 

center and two GFRA2 monomers attached (see 

figure 4). GFRAs are located in lipid rafts of the 

plasma membrane, and RET is recruited. GFRAs 

can come from the same cell as RET, or from a 

different cell. When the co-receptor is produced by 

the same cell as RET, it is termed cis signaling.  
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Figure 3: RET Electron Microscopy Structure  29-270 correspond to the cadherin-like domains CLD1 and CLD2 (see figure 2), 
554-1009 correspond to part of crd (cysteine-rich domain), TM (transmembrane domain), and most of the tyrosine kinase 
domains; 29-635 correspond to the extracellular domains of RET. Images are taken from PhosphoSitePlus and ModBase: 

https://www.phosphosite.org//proteinAction?id=654showAllSites=true and https://modbase.compbio.ucsf.edu/modbase-
cgi/model_details.cgi?searchmode=defaultdisplaymode=moddetailseq_id=model_id=a6b011e59e4a801a7295e43b8a6bc701qu

eryfile=1589446904_9939 
 
 

When the co-receptor is produced by another cell, it 

is termed trans signaling. Cis and trans activation of 

RET can occur (Reactome).  

RET binding: the NRTN-GFRA2 complex binds 

two copies of the RET extra cellular domain 

("RET-ecd") (--> RET dimerization), thereby 

forming a heterohexamer. RET-ecd consists of four 

cadherin-like domains (RET-CLD1-4) and a 

cysteine-rich domain (RET-crd). RET-CLD2 and 

RET-CLD3 coordinate calcium ions that are critical 

for RET folding. 

Signaling: RET dimerization results in tyrosine 

autophosphorylation on specific tyrosine residues. 

(e.g. GDNF-GFRA1-activated RET is 

autophosphorylated at tyrosine-sites, Y981, Y1015, 

Y1062, and Y1096 (Note: Y1096 in found only in 

RET51 isoform)).  

RET activates various signaling pathways, mainly 

through Y1062, such as PI3K/AKT/MTOR, 

RAS/RAF/MAPK, and JUN pathways to activate 

transcription factors, including EIF4EBP1, 

RPS6KB1, MYC, JUN, ATF1, ATF2, TP53) 

(Kouvaraki et al., 2005; Goodman et al., 2014; 

Bigalke et al., 2019).  

The frequently mutated C634 in patients with 

MEN2A is part of the RET-crd, in which wild-type 

RET forms a disulfide bond with C630. The C634R 

mutation causes ligand-independent dimerization of 

RET (Goodman et al., 2014; Bigalke et al., 2019).  

Phosphatases:  Protein tyrosine phosphorylation is 

regulated by opposite activities of protein tyrosine 

kinases (PTKs) and phosphatases (PTPs). GDNF 

and GRB2 form a complex with the protein tyrosine 

phosphatase PTPRA. PTPRA dephosphorylates 

RET and inhibits the RET-RAS/RAF/MAPK 

signaling pathway. PTPRA also regulates the RET 

mutant found in MEN2A, whereas the MEN2B 

mutant is insensitive to PTPRA (Yadav et al., 

2020). Other phosphatases are also known to 

balance the phosphorylation and oncogenic activity 

of RET: PTPRF, PTPN6 and PTPN11.  

Feedback loop:  ATF4 overexpression induces cell 

death. ATF4 promotes RET degradation and 

inhibits RET signaling pathways. In a feedback 

loop, RET represses expression of the ATF4 target 

proapoptotic genes PMAIP1 (known as NOXA) 

and BBC3 (PUMA) through phosphorylation-

dependent degradation of ATF4 (Bagheri-Yarmand 

et al. 2015; Bagheri-Yarmand et al. 2017). 

https://modbase.compbio.ucsf.edu/modbase-cgi/model_details.cgi?searchmode=defaultdisplaymode=moddetailseq_id=model_id=a6b011e59e4a801a7295e43b8a6bc701queryfile=1589446904_9939
https://modbase.compbio.ucsf.edu/modbase-cgi/model_details.cgi?searchmode=defaultdisplaymode=moddetailseq_id=model_id=a6b011e59e4a801a7295e43b8a6bc701queryfile=1589446904_9939
https://modbase.compbio.ucsf.edu/modbase-cgi/model_details.cgi?searchmode=defaultdisplaymode=moddetailseq_id=model_id=a6b011e59e4a801a7295e43b8a6bc701queryfile=1589446904_9939
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Figure 4: RET Pathway.  An homodimer of Ligand (either GDNF, NRTN, PSPN, or ARTN) binds an homodimer of co-factors 
GFRA 1 to 4). The complex binds two RET proteins, forming a heterohexamer. RET dimerization results in tyrosine 

autophosphorylation which induces signaling pathways, such as PI3K/AKT/MTOR, RAS/RAF/MAPK, and JUN pathways (Figure 
4). Note the so-called JUN pathway is the following RAC1 --> MAP3K proteins (misnamed MAPKKK... or JNKKK,e.g "MEKK1" or 

"MEKK4" for MAP3K1 and MAP3K4) --> MAP2K proteins (also called MAPKK... or JNKK, e.g "MKK4" or "MKK7" for MAP2K4  
and MAP2K7)  --> MAPK proteins (MAPK... or JNK, e.g "p38" or "JNK" for MAPK14  and MAPK8). Various processes are 

stimulated or repressed such as autophagy, angiogenesis, ribosomes biogenesis, translation, survival, apoptosis, differentiation, 
migration … 

 

Mutations 

Gain of function mutations affecting the 

extracellular cysteine-rich domain of RET result in 

covalent dimerization and constitutively activation 

of the receptor. Loss of function mutations 

inactivate the signaling pathway. Note: if needed, 

see  "Nomenclature for the description of mutations 

and other sequence variations": 

http://atlasgeneticsoncology.org/Educ/NomMutID3

0067ES.html 

RET role in the tumor microenvironment:   The 

tumor microenvironment (TME) consists of 

extracellular matrix, mesenchymal cells (i.e., 

fibroblasts, pericytes, adipocytes and other stromal 

cells), immune-inflammatory cells, blood and 

lymphatic vessels particularly in the perineural 

environment.  

Activation of the RET pathway has been found to 

be responsible for high expression and activation of 

cancer-associated fibroblasts-related 

proinflammatory proteins including cytokines, 

chemokines and their receptors (e.g. CCL2, 

CXCR4, CXCL8 (also called IL8), CXCL12, 

CCL20, CSF1, CSF2RA (GM-CSF), CSF3 (G-

CSF), IL1B, SPP1). Cancer-associated fibroblasts 

promote tumorigenesis and metastasis, tumor 

angiogenesis and recruitment of immune-

inflammatory cells (reviews in Castellone and 

Melillo 2018; Mulligan 2019). 

http://atlasgeneticsoncology.org/Educ/NomMutID30067ES.html
http://atlasgeneticsoncology.org/Educ/NomMutID30067ES.html
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Figure 5: RET Translocations t(Var;10)(Var;q11) 5' Partner / 3' RET 

 

Germinal 
Mutations in RET have been found in various 

closely related inherited diseases, namely: multiple 

endocrine neoplasia type 2A (MEN2A), multiple 

endocrine neoplasia type 2B (MEN2B), familial 

medullary thyroid carcinomas (FMTC), familial 

pheochromocytoma predisposition, Hirschsprung 

disease, congenital central hypoventilation 

syndrome, and renal hypodysplasia/aplasia 1 (see 

below).  

MEN2A/ MEN2B/ FMTC: 199 variants are 

described in MEN2 database 

(https://arup.utah.edu/database/MEN2/MEN2_displ

ay.php), of which 82 are said pathogenic. Mutations 

are dispersed through exons 7 to 16, many of them 

occurring in exons 10 or 11, in the cysteine rich 

domain: C609, C611, C618, C620 (exon 10), C630, 

D631, C634, T636, K666, D707 (exon 11). Other 

mutations are E505 (exon 7), C515, C531, G533, 

G548 (exon 8), E768, L790, Q781 (exon 13), V804 

(exon 14), A883, S891, S904 (exon 15), M918, 

R912 (exon 16). The more common disease 

phenotype-specific mutations found in MEN2 are: 

E768D, L790F, Y791F, S891A, V804M/L (FMTC) 

and A883F, M918T (MEN2B). M918T catalytic 

domain mutants enhances autophosphorylation 

kinetics. M918T is a well characterized MEN2 

mutation, and it correlates with the most aggressive 

and consistent disease phenotype (i.e. MEN2B) 

(Plaza-Menacho, 2017). 

Somatic 
Kato et al., 2017 studied 4,871 diverse cancer cases. 

RET aberrations were identified in 88 cases (1.8%). 

It was an amplification in 25% of cases (rounded 

numbers), a mutation in 40%, a translocation/fusion 

gene in 30%. Although subgroups are very small, it 

can be noted that mutations were found in 

medullary thyroid carcinoma (80%, 4 of 5 cases), 

paraganglioma (25%, 1/4), anaplastic thyroid 

carcinoma (17%, 2/12), and urothelial carcinoma 

(17%, 1/6). translocations/fusion genes were found 

in lung carcinosarcoma (17%, 1/6), papillary 

thyroid carcinoma (9%, 2/23) and lung 

adenocarcinoma (4%, 16/412), and amplifications 

were found in fallopian tube adenocarcinoma (8%, 

1/12), uterine carcinosarcoma (5%, 1/19), and 

duodenal adenocarcinoma (5%, 1/20).  

According to the review by Subbiah and Cote, 

2020, the frequencies of somatic RET 

translocations/fusion genes and mutations 

associated with oncogenesis are the following: 

medullary thyroid cancer: 60-90%, papillary 

thyroid cancer: 10-20%, urothelial carcinoma: 

16.7%, basal cell carcinoma: 12.5%, meningioma: 

5.6%, non-small cell lung carcinoma: 1-2%, 

ovarian epithelial carcinoma: 1.9%, esophageal 

carcinoma: 1.4%, colorectal carcinoma: 0.7%, 

gastric adenocarcinoma: 0.7% , melanoma: 0.7%, 

and breast carcinoma: 0.2%,  

in a series of 32,989 advanced cancers RET 

alterations included 143 in-frame fusions found in 

141 patients and 33 single-nucleotide variants 

(SNV) resulting in an amino acid substitution found 

in 29 patients. RET fusions were most prevalent 

among patients with non-small cell lung carcinoma 

(NSCLC), thyroid cancer, or colorectal cancer. 

Seven different fusion partners (KIF5B, CCDC6, 

NCOA4, TRIM24, TRIM33, ERC1, APAF1) were 

observed. The most common fusion partner was 

KIF5B, which was only observed in NSCLC (n = 

75) (Rich et al., 2019).  

Copy number variations according to Genomic 

Data Commons Data Portal are: CNV gains  in: 

sarcomas (11% of cases, rounded numbers), ovarian 

serous cystadenocarcinoma (10%), lung squamous 

cell carcinoma (8%), bladder urothelial carcinoma 

(7%), breast carcinoma (6%), lung adenocarcinoma 

(6%), esophageal carcinoma (6%), 

cholangiocarcinoma (6%), uterine carcinosarcoma 

(5%), adrenocortical carcinoma (4%), head and 

neck squamous cell carcinoma (4%), gastric 

adenocarcinoma (3%), hepatocellular carcinoma 

(3%), glioblastoma multiforme (3%), uterine 

endometrial carcinoma (2%), cervical carcinoma 

(2%), skin cutaneous melanoma (2%), colorectal 

adenocarcinoma (1-2%), pancreatic 

adenocarcinoma (1 %); CNV losses in: ovarian 

serous cystadenocarcinoma (9%), sarcomas (6%), 

uterine carcinosarcoma (5 %), bladder urothelial 
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carcinoma (5%), mesothelioma (4%), esophageal 

carcinoma (3%), prostate adenocarcinoma (3%), 

breast carcinoma (3%), adrenocortical carcinoma 

(2%), uterine endometrial carcinoma (2%), head 

and neck squamous cell carcinoma (2%),cervical 

carcinoma (2%), gastric adenocarcinoma (2%), lung 

adenocarcinoma (1%), colon adenocarcinoma (1%), 

hepatocellular carcinoma (1%), lung squamous cell 

carcinoma (1%). 

Kohno et al, 2020 reviewed the mutations and 

fusion genes involving RET in various cancers 

detected in two large studies (Project Genie and 

TCGA PanCancer Atlas Studies):  

Mutations: medullary thyroid carcinoma: 55% of 

cases presented a mutation in RET; breast 

carcinoma: 8%; of cases parathyroid carcinoma: 6 

%; pheochromocytoma: 3.4 - 4.0%; T-cell 

lymphoblastic leukemia: 3%; lung carcinoma 

(neuroendocrine): 3%; upper tract urothelial 

carcinoma: 0,4%; uterine endometrioid carcinoma 

(serous/papillary serous): 0,3%. 

Translocations/fusion genes: RET 

translocations/fusion genes result in hybrid genes 

and proteins (Figure 5) with constitutive 

dimerization and activation of RET pathways. RET 

translocations/fusion genes were found in: papillary 

thyroid carcinoma, where 1.4 - 4.4% of cases 

presented a gene fusion implicating RET; poorly 

differentiated thyroid carcinoma: 3% of cases; 

pleomorphic lung carcinoma: 2.5%; thyroid 

carcinoma (hurthle cell): 2%; anaplastic thyroid 

carcinoma: 1%; lung adenocarcinoma: 0.2 - 0.6%; 

poorly differentiated non-small cell lung carcinoma: 

0.5%; colon adenocarcinoma 0.26%; gastric 

adenocarcinoma 0.2%; serous ovarian carcinoma: 

0,17%; non-small cell lung carcinoma: 0,16%.  
 

RET 

Partner 

Gene 

Chr

om. 
Location: band (bp) Translocation / fusion gene Disease 

TRIM33 
1 

1p13.2 (114392777) t(1;10)(p13;q11) TRIM33/RET 
Lung: non-small cell lung carcinoma 

Thyroid: papillary thyroid carcinoma 

RASAL2 1q25.2 (178093729) t(1;10)(q25;q11) RASAL2/RET Soft tissue sarcoma 

EML4 
2 

2p21 (42169338)) t(2;10)(p21;q11) EML4/RET Lung: non-small cell lung carcinoma 

EML6 2p16.1 (54725012 t(2;10)(p16;q11) EML6/RET Lung: non-small cell lung carcinoma 

TFG 
3 

3q12.2 (100709331) t(3;10)(q12;q11) TFG/RET Soft tissues: spindle cell tumors 

TBL1XR1 3q26.32 (177019355) t(3;10)(q26;q11) TBL1XR1/RET Thyroid: papillary thyroid carcinoma 

EPHA5 4 4q13.1 (65319563) t(4;10)(q13;q11) APHA5/RET Lung: non-small cell lung carcinoma 

SQSTM1 5 5q35.3 (179820842) t(5;10)(q35;q11) SQSTM1/RET Thyroid: papillary thyroid carcinoma 

KIF13A 

6 

6p22.3 (17763693) t(6;10)(p22;q11) KIF13A/RET Lung: adenocarcinoma 

TRIM27 6p22.1 (28903002) t(6;10)(p22;q11) TRIM27/RET 

Salivary glands: intraductal carcinoma 

Thyroid: papillary thyroid carcinoma 

Neuro-endocrine tumor: multiple endocrine neoplasia 

TBC1D32 6q22.31 (121079494) t(6;10)(q22;q11) TBC1D32/RET Lung: adenocarcinoma 

PTPRK 6q22.33 (127968779) t(6;10)(q22;q11) PTPRK/RET Lung: non-small cell lung carcinoma 

FGFR1OP 6q27 (166,999,317) t(6;10)(q27;q11) FGFR1OP/RET Chronic myeloproliferative neoplasm 

CLIP2 

7 

7q11.23 (74289475) t(7;10)(q11;q11) CLIP2/RET Soft tissues: spindle mesenchymal neoplasm 

CUX1 7q22.1 (101817602) t(7;10)(q22,q11) CUX1/RET Lung: non-small cell lung carcinoma 

TRIM24 7q33 (138460334) t(7;10)(q33;q11) TRIM24/RET 
Lung: non-small cell lung carcinoma 

Thyroid: papillary thyroid carcinoma 

TAS2R38 7q34 (141972631) t(7;10)(q34;q11) TAS2R38/RET Thyroid: papillary thyroid carcinoma 

PCM1 

8 

8p22 (17922857) t(8;10)(p22;q11) PCM1/RET 
Lung: non-small cell lung carcinoma 

Thyroid: papillary thyroid carcinoma 

RBPMS 8p12 (30384501) t(8;10)(p12;q11) RBPMS/RET Lung: non-small cell lung carcinoma 

HOOK3 8p11.21 (42896890) t(8;10)(p11;q11) HOOK3/RET Thyroid: papillary thyroid carcinoma 

FKBP15 9 9q32 (113165520) t(9;10)(q32;q11) FKBP15/RET Thyroid: papillary thyroid carcinoma 

PRKCQ 
10 

10p15.1 (6427143) t(10;10)(p15;q11) PRKCQ/RET Lung: non-small cell lung carcinoma 

TAF3  10p14 (7818504) t(10;10)(p14;q11) TAF3/RET Thyroid: papillary thyroid carcinoma 
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CCDC3 10p13 (12896625) t(10;10)(p13;q11) CCDC3/RET Lung: non-small cell lung carcinoma 

PRPF18 10p13 (13586939) t(10;10)(p13;q11) PRPF18/RET Lung: non-small cell lung carcinoma 

FRMD4A 10p13 (13643706) t(10;10)(p13;q11) FRMD4A/RET Lung: non-small cell lung carcinoma 

KIAA1217 10p12.2 (24208791) t(10;10)(p12;q11) KIAA1217/RET 
Lung: adenocarcinoma 

Soft tissues: spindle mesenchymal neoplasm 

ANKRD26 10p12.1 (27004116)  t(10;10)(p12,q11) ANKRD26/RET Thyroid: papillary thyroid carcinoma 

ACBD5 10p12.1 (27195214) t(10;10)(p12;q11) ACBD5/RET Thyroid: papillary thyroid carcinoma 

WAC 10p12.1 (28533492) t(10;10)(p12;q11) WAC/RET Lung: non-small cell lung carcinoma 

ARHGAP12 10p11.22 (31805398) t(10;10)(p11;q11) ARHGAP12/RET Lung: non-small cell lung carcinoma 

KIF5B 10p11.22 (32009010 ) t(10;10)(p11;q11) KIF5B/RET 

Lung: non-small cell lung carcinoma 

Skin: melanomas/Spitz tumors 

Thyroid: papillary thyroid carcinoma 

PARD3 10p11.22 (34109560) t(10;10)(p11;q11) PARD3/RET Lung: non-small cell lung carcinoma 

CCNYL2 10q11.21 (42408174) CCNYL2/RET (10q11) Lung: non-small cell lung carcinoma 

RASGEF1A 10q11.21 (43194533) RASGEF1A/RET (10q11) Breast cancer 

RASSF4 10q11.21 (44959771) RASSF4/RET (10q11) Lung: non-small cell lung carcinoma 

NCOA4 10q11.23 (46005088) NCOA4/RET (10q11) 

Breast cancer 

Colorectal cancer  

Lung: adenocarcinoma 

Ovary: Germ cell tumours  

Salivary glands: intraductal carcinoma 

Soft tissues: spindle cell tumors 

Thyroid: papillary thyroid carcinoma 

PRKG1 10q11.23 (51074474) PRKG1/RET (10q11) Lung: non-small cell lung carcinoma 

ANK3 10q21.2 (60026298) t(10;10)(q11;q21) ANK3/RET Thyroid: papillary thyroid carcinoma 

SLC16A9  10q21.2 (59650764) t(10;10))(q11;q21) SLC16A9/RET Thyroid: papillary thyroid carcinoma 

CCDC6 10q21.2 (59788748) t(10;10)(q11;q21) CCDC6/RET 

Colorectal cancer  

Lung: non-small cell lung carcinoma 

Thyroid: papillary thyroid carcinoma 

CTNNA3 10q21.3 (65912518) t(10;10)(q11;q21) CTNNA3/RET Lung: non-small cell lung carcinoma 

SIRT1 10q21.3 (67884669) t(10;10)(q11;q21) SIRT1/RET Lung: non-small cell lung carcinoma 

RUFY2 10q21.3 (68343518) t(10;10)(q11;q21) RUFY2/RET 
Lung: non-small cell lung carcinoma 

Thyroid: papillary thyroid carcinoma 

DYDC1 10q23.1 (80336106) t(10;10)(q11;q23) DYDC1/RET Lung: non-small cell lung carcinoma 

SORBS1 10q24 (110005804) t(10;10)(q11;q24) SORBS1/RET Lung: non-small cell lung carcinoma 

ADD3 10q25.1 (114161608) t(10;10)(q11;q25) ADD3/RET Lung: non-small cell lung carcinoma 

CCDC186 10q25.3 (114294824) t(10;10)(q11;q25) CCDC186/RET Lung: non-small cell lung carcinoma 

AFAP1L2 10q25.3 (126905409) t(10;10)(q11;q25) AFAP1L2/RET Thyroid: papillary thyroid carcinoma 

DOCK1 10q26.2 (126905409) t(10;10)(q11;q26) DOCK1/RET Lung: non-small cell lung carcinoma 

CLRN3 10q26.2 (127877841) t(10;10)(q11;q26) CLRN3/RET Thyroid: papillary thyroid carcinoma 

PPFIBP2 
11 

11p15.4 (7513765) t(10;11)(q11;p15) PPFIBP2/RET Thyroid: papillary thyroid carcinoma 

PICALM 11q14.2 (85957171) t(10;11)(q11;q14) PICALM/RET Lung: non-small cell lung carcinoma 

ETV6 

12 

12p13.2 (11649854) t(10;12)(q11;p13) ETV6/RET Salivary glands: mammary analog secretory carcinoma 

ERC1 12q13.33 (991208 ) t(10;12)(q11;q13) ERC1/RET 

Breast cancer 

Lung: non-small cell lung carcinoma 

Thyroid: papillary thyroid carcinoma 

ANKS1B 12q23.1 (98743974) t(10;12)(q11;q23) ANKS1B/RET Lung: non-small cell lung carcinoma 

CLIP1 12q24.31 (122271434) t(10;12)(q11;q24) CLIP1/RET Lung: non-small cell lung carcinoma 
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TSSK4 

14 

14q12 (24205720) t(10;14)(q11;q12) TSSK4/RET Lung: non-small cell lung carcinoma 

KTN1 14q22.3 (55580207) t(10;14)(q11;q22) KTN1/RET Thyroid: papillary thyroid carcinoma 

CCDC88C 14q32.11 (91271323) t(10;14)(q11;q32) CCDC88C/RET Lung: non-small cell lung carcinoma 

GOLGA5 14q32.12 (92794231) t(10;14)(q11;q32) GOLGA5/RET 
Skin: melanomas/Spitz tumors 

Thyroid: papillary thyroid carcinoma 

MYO5C 
15 

15q21.2 (52192318) t(10;15)(q11;q21) MYO5C/RET Lung: non-small cell lung carcinoma 

AKAP13 15q25.3 (85380616) t(10;15)(q11;q25) AKAP13/RET Thyroid: papillary thyroid carcinoma 

MYH10 

17 

17p13.1 (8474205) t(10;17)(q11;p13) MYH10/RET 
Soft tissues: Infantile myofibromatosis 

Soft tissues: spindle mesenchymal neoplasm 

MYH13 17p13.1 (10300866) t(10;17)(q11;p13) MYH13/RET Thyroid: papillary thyroid carcinoma 

MPRIP 17p11.2 (17042760) t(10;17)(q11;p11) MPRIP/RET Lung: non-small cell lung carcinoma 

PRKAR1A 17q24.2 (68512379) t(10;17)(q11;q24) PRKAR1A/RET 
Lung: non-small cell lung carcinoma 

Neuro-endocrine tumor 

RELCH 

(KIAA1468) 
18 18q21.33 (62187291) t(10;18)(q11;q21) KIAA1468/RET 

Lung: adenocarcinoma 

Lung: non-small cell lung carcinoma 

Thyroid: papillary thyroid carcinoma 

LSM14A 19 19q13.11 (34172447) t(10;19)(q11;q13) LSM14A/RET Lung: adenocarcinoma 

RRBP1 20 20p12.1 (17613678) t(10;20)(q11;p12) RRBP1/RET Colorectal cancer  

BCR 

22 

22q11.23 (23180365) t(10;22)(q11;q11) BCR/RET  Chronic myeloproliferative neoplasm 

SPECC1L 22q11.23 (24270817) t(10;22)(q11;q11) SPECC1L/RET Thyroid: papillary thyroid carcinoma 

TIMP3 22q12.3 (32800816) t(10;22)(q11 ;q12) TIMP3/RET Soft tissues: Inflammatory myofibroblastic tumor 

TABLE 1: RET and 73 translocations/fusion partners 
 

Implicated in 

Multiple endocrine neoplasia type 2A 
(MEN2A) 

RET mutations in MEN2A are gain-of-function 

mutations. 

Disease 

Multiple endocrine neoplasia type 2A is an 

autosomal dominant syndrome of multiple 

endocrine neoplasms, including medullary thyroid 

carcinoma (MTC), a tumor of the calcitonin-

secreting parafollicular C-cells in 100% of the 

cases, pheochromocytoma, a tumor of the adrenal 

chromaffin cells in 50% of the cases, and primary 

hyperparathyroidism in 20-30% of the cases. It is 

caused by missense mutations in RET. There is a 

cluster of mutations concerning six cysteines (aa 

609, 611, 618, 620, exon 10 and aa 630, 634, exon 

11, cysteine-rich domain) in MEN2A (Giraud, 

2001; Somnay et al., 2012; Krampitz and Norton, 

2014; Plaza-Menacho, 2017). 

Multiple endocrine neoplasia type 2B 
(MEN2B) 

RET mutations in MEN2B are gain-of-function 

mutations. 

Disease 

Multiple endocrine neoplasia type 2B, is an 

autosomal dominant syndrome defined by the 

presence of medullary thyroid carcinoma, 

pheochromocytomas, ganglioneuromatosis of the 

gastrointestinal tract, mucosal neuromas of the lips 

and tongue, and a Marfanoid habitus, but no 

hyperparathyroidism. It is caused by missense 

mutations in RET. The major mutation is M918T 

(coded by exon 16, tyrosine kinase domain) 

(Giraud, 2001; Somnay et al., 2012; Krampitz and 

Norton, 2014). 

Familial medullary thyroid 
carcinomas (FMTC) 

RET mutations in FMTC are gain-of-function 

mutations. 

Disease 

Medullary thyroid carcinomas (MTC) develop in 

either sporadic (75%) or hereditary form (25%). 

Familial Medullary thyroid carcinomas is an 

autosomal dominant syndrome of tumors of 

neuroendocrine origin that arise from para-follicular 

C cells which secrete a variety of peptides and 

hormones including calcitonin. FMTC can be an 

isolated condition, or part of MEN2A or MEN2B. It 

is caused by missense mutations in RET. Germline-

activating RET mutations are found in 95%-98% of 

hereditary MTC, most often mutations in one of the 

5 cysteines (aa 609, 611, 618, 620, exons 10 and aa 
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634, exon 11, cysteine-rich domain), mutations in 

aa 768, 790, 791, exon 14 or aa 804, 844 and aa 

891, exon 15 being less frequent (in the tyrosine 

kinase domain). RET mutations are present in 25%-

40% of sporadic MTC. Activating point mutations 

in RAS genes (HRAS, KRAS, and NRAS) has been 

described in RET-negative sporadic MTC. Patients 

with a RET mutation had a worse outcome. The 

most frequent mutation in sporadic MTC was RET 

M918T (from c.2753T>C). RET C634W (from 

c.1902C>G) was also found frequently (Ceolin et 

al, 2012; Somnay et al., 2012; Krampitz and 

Norton, 2014; Ciampi et al., 2019). 

Familial pheochromocytoma 
predisposition 

RET mutations in familial pheochromocytoma 

predisposition are gain-of-function mutations. 

Disease 

Pheochromocytomas are adrenal medullary tumors 

(while paragangliomas arise from extra-adrenal 

ganglial sympathetic/parasympathetic chains) 

secreting catechocatecholamines with tachycardia, 

sweating and hypertension. It is an inherited form 

of cancer (autosomal dominant syndrome) in 10% 

to 25% of cases.  

In familial cases, pheochromocytoma is a 

component of one of the four following autosomal 

dominant syndromic diseases, Multiple Endocrine 

Neoplasia type 2, Von-Hippel-Lindau disease,  

hereditary paraganglioma syndrome and 

neurofibromatosis type 1. Pheochromocytoma is 

associated with germline and/or somatic mutations 

in more than 20 genes, mainly genes of the 

hypoxia-inducible factor (HIF) signaling pathway, 

succinate dehydrogenase genes and VHL, the 

kinase signaling pathway, including RET and RAS 

genes, and Wnt and Hedgehog pathways.  

In 75 to 90% cases, it is a sporadic or a non-

syndromic disease of an unknown etiology 

(Gimenez-Roqueplo 2003; Jochmanova and Pacak, 

2018).  

RET mutations in pheochromocytoma are mainly 

found in exons 10, 11, 13 and 16. Carriers of codon 

634 germline mutations present with much younger 

mean age of onset, and have a higher risk of 

developing pheochromocytomas. 

Hirschsprung disease 

RET mutations in Hirschsprung disease are loss of 

function mutations. 

Disease 

Hirschsprung disease or aganglionic megacolon is 

an autosomal dominant syndrome characterized by 

congenital absence of ganglion cells of the 

gastrointestinal tract (deficit in enteric nervous 

system), due to defective neural crest cell 

development. More than 10 genes are known to be 

possibly implicated in this disease, including RET, 

SOX10, ZEB2, EDNRB, EDN3 and PHOX2B.  

Expression and penetrance of a RET mutation is 

variable and sex dependent (penetrance is 70% in 

males and 50% in females). More than 80 

mutations have been identified, in particular: S32L, 

Y36C, L40P, P64L, L72P, R77C, G93S, L123F, 

A143G, C197Y, R231H, D264K, R287K, D300K, 

D300N, F329FfsX24, R330Q, R330N, R360W, 

P399L, R418X, D469N, R475Q, C611G, C620Y, 

all in the extracellular region (Anders et al., 2001; 

Butler Tjaden et al., 2013; Plaza-Menacho, 2017; 

Lorente-Ros et al., in press). 

Congenital central hypoventilation 
syndrome (CCHS) 

RET mutations in CCHS are loss of function 

mutations. 

Disease 

Congenital central hypoventilation syndrome (also 

called Haddad syndrome, Ondine-Hirschsprung 

disease), is a life-threatening syndrome 

characterized by impaired ventilatory response to 

hypercarbia and hypoxemia, Hirschsprung disease 

and tumors of neural-crest derivatives. It is sporadic 

in the majority of cases, and autosomal dominant in 

other cases, implicating PHOX2B, RET, GDNF, 

ASCL1 or EDN3 (Bolk et al., 1996; Amiel et al., 

2003). 

Renal hypodysplasia/aplasia 1 
(RHDA1) 

RET mutations in RHDA1 are loss of function 

mutations. 

Disease 

Renal hypodysplasia/aplasia 1 is an autosomal 

recessive syndrome which usually results in death 

in utero or in the perinatal period, and is associated 

with 3 genes ITGA8, PAX2, and RET according to 

LOVD. About 5% of living patients with congenital 

anomalies of the kidneys or lower urinary tract 

harbor mutations in the RET pathway, and RET 

mutations are present in 30% of fetuses with 

unilateral or bilateral renal agenesis. RET mutations 

or other alteration of the RET signaling pathway 

provokes delayed attachment of Wolffian duct to 

reach the cloaca, delayed degeneration of the 

mesonephros, renal agenesis or cystic dysplastic 

kidneys and ureters (Davis et al., 2014). 

Thyroid cancers 

Disease 

Thyroid cancer includes papillary thyroid 

carcinoma (PTC, 80% of thyroid cancers), follicular 

thyroid carcinoma (FTC, 10%-15% of thyroid 

cancers), medullary thyroid cancer (MTC, 5%-8% 

of thyroid cancers), and anaplastic thyroid cancer 

(less than 5%). Squamous and mucoepidermoid 
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carcinomas account for 1% and 0.5 % of thyroid 

carcinomas.  

RET translocations/fusion genes have been 

described in 20-40% of patients with papillary 

thyroid carcinoma, with higher frequency in 

radiation-exposed patients and mutations in RET 

have been reported in 40-70% of patients with 

medullary thyroid carcinoma (Kato et al., 2017) 

Oncogenesis 

RET polymorphisms and thyroid cancer: G691S, 

L769L and S904S polymorphisms were associated 

with predisposition to the development of sporadic 

MTC (Ceolin et al, 2012).  

Medullary thyroid cancer:  Amplification:  30% 

of medullary thyroid carcinomas harbour RET gene 

amplification with no alterations in chromosome 10 

or a polysomy of chromosome 10, in variable 

percentage of cells, suggesting cell heterogeneity. 

RET copy number alterations can be considered a 

poor prognostic factor potentiating the poor 

prognostic role of RET mutation (Ciampi et al., 

2012). Mutations:  The far most frequent mutation 

in medullary thyroid cancer is M918T. Other 

mutations are: D631_L633delinsE, 

D631_L633delinsA, E632_L633del, C634R 

(cBioPortal). ATF4 promotes RET degradation. 

Low ATF4 expression correlates with poor overall 

survival of patients with MTC (Bagheri-Yarmand et 

al. 2017).  

Papillary thyroid cancer:  The most common 

rearrangements are translocation/fusion gene 

t(10;10)(q11;q21) CCDC6/RET and fusion gene 

NCOA4/RET, accounting for about 90%. 

Translocations/fusion genes in papillary thyroid 

cancer: t(1;10)(p13;q11) TRIM33/RET, 

t(3;10)(q26;q11) TBL1XR1/RET, t(5;10)(q35;q11) 

SQSTM1/RET, t(6;10)(p22;q11) TRIM27/RET, 

t(7;10)(q33;q11) TRIM24/RET, t(7;10)(q34;q11) 

TAS2R38/RET, t(8;10)(p22;q11) PCM1/RET, 

t(8;10)(p11;q11) HOOK3/RET, t(9;10)(q32;q11) 

FKBP15/RET, t(10;10)(p14;q11) TAF3/RET, 

t(10;10)(p12,q11) ANKRD26/RET, 

t(10;10)(p12;q11) ACBD5/RET, t(10;10)(p11;q11) 

KIF5B/RET, t(10;11)(q11;p15) PPFIBP2/RET, 

NCOA4/RET (10q11), t(10;10)(q11;q21) 

ANK3/RET, t(10;10))(q11;q21) SLC16A9/RET, 

t(10;10)(q11;q21) CCDC6/RET, t(10;10)(q11;q21) 

RUFY2/RET, t(10;10)(q11;q25) AFAP1L2/RET, 

t(10;10)(q11;q26) CLRN3/RET, t(10;12)(q11;q13) 

ERC1/RET, t(10;14)(q11;q22) KTN1/RET, 

t(10;14)(q11;q32) GOLGA5/RET, 

t(10;15)(q11;q25) AKAP13/RET, 

t(10;17)(q11;p13) MYH13/RET, t(10;18)(q11;q21) 

RELCH/RET, t(10;22)(q11;q11) SPECC1L/RET 

(PMID 8634704, 10337992, 10439047, 10741739, 

10850414, 10980597, 11156407, 16946010, 

17639057, 25175022, 25204415, 25417114, 

25500544, 25546157, 27683183, 28351223, 

28911147, 30466862, 31425920, 31715421 and 

data from  Atlas Band 10q11 ).  

Poorly differentiated thyroid cancer:  mutation  
A1105V was found, and also translocations/fusion 

genes  t(3;10)(q12;q11)TFG/RET, t(3;10)(q26;q11) 

PDCD10/RET and t(10;10)(q11;q21) CCDC6/RET. 

Lung cancers 

Disease 

Non-small cell lung carcinomas (NSCLC) are 

classified as: adenocarcinomas (30-40% of lung 

tumors), squamous cell carcinomas (40% of 

tumors), adenosquamous carcinomas, large cell 

carcinomas, sarcomatoid carcinomas, carcinoid 

tumors, and salivary gland tumors. Small cell lung 

carcinoma (SCLC), 20% of tumors, is a pulmonary 

neuroendocrine tumor. Other neuroendocrine 

tumors of the lungs are large cell neuroendocrine 

carcinomas, typical carcinoids, and atypical 

carcinoids.  

RET translocations/fusion genes have been reported 

in 1% to 2% of patients with non-small cell lung 

cancer. Most cases of RET fusion-positive NSCLCs 

are adenocarcinoma, although Cai et al., 2013 

screening 392 patients with NSCLC found 6 

patients (1.5%) with a KIF5B/RET fusion: 4 had 

adenocarcinoma, 1 had a malignant neuroendocrine 

tumor, and 1 had squamous cell carcinoma. 

However, a meta-analysis of 165 patients with  

RET-rearranged NSCLC from 29 centers across 

Europe, Asia, and the United States was conducted. 

Median age was 61 years (range, 29 to 89 years). 

The majority of patients were never smokers (63%) 

with lung adenocarcinomas (98%); squamous cell 

(1%) and advanced disease (91%). The most 

frequent rearrangement was KIF5B/RET (72%); 

CCDC6/RET was found in 19 patients (23%), 

NCOA4/RET in two patients (2%), EPHA5/RET in 

one patient (1%), and PICALM/RET in one patient 

(1%) (Gautschi et al., 2017). In a study screening 

1139 lung adenocarcinoma patients, ALK fusions 

were detected in 5.1% of cases, RET fusions in 

1.3%, and ROS1 fusions in 1%. No significant 

difference in survival was observed between fusion-

positive and fusion-negative patients (Pan el al., 

2014). RET mutations in small-cell 

(neuroendocrine) lung cancer is extremely rare 

(Rudin et al., 2014). 

Oncogenesis 

Cells expressing oncogenic KIF5B/RET are 

sensitive to multi-kinase inhibitors that inhibit RET 

(Lipson et al., 2012).  

A study on non-small-cell lung cancer showed RET 

amplification in 3%, low RET gene copy number 

gain in 8%, and RET over expression in 8% of 

cases (Platt et al., 2015).  

RET  translocations/fusion genes in NSCLC: 

t(1;10)(p13;q11) TRIM33/RET, t(2;10)(p21;q11) 

EML4/RET, t(2;10)(p16;q11) EML6/RET, 

http://atlasgeneticsoncology.org/Bands/10q11.html
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t(4;10)(q13;q11) APHA5/RET, t(6;10)(p22;q11) 

KIF13A/RET, t(6;10)(q22;q11) TBC1D32/RET, 

t(6;10)(q22;q11) PTPRK/RET, t(7;10)(q22,q11) 

CUX1/RET, t(7;10)(q33;q11) TRIM24/RET, 

t(8;10)(p22;q11) PCM1/RET, t(8;10)(p12;q11) 

RBPMS/RET, t(10;10)(p13;q11) CCDC3/RET, 

t(10;10)(p13;q11) PRPF18/RET, t(10;10)(p13;q11) 

FRMD4A/RET, t(10;10)(p12;q11) 

KIAA1217/RET, t(10;10)(p12;q11) WAC/RET, 

t(10;10)(p11;q11) PRKCQ/RET, t(10;10)(p11;q11) 

ARHGAP12/RET, t(10;10)(p11;q11), KIF5B/RET, 

t(10;10)(p11;q11) PARD3/RET, CCNYL2/RET 

(10q11), RASSF4/RET (10q11), NCOA4/RET 

(10q11), PRKG1/RET (10q11), t(10;10)(q11;q21) 

CCDC6/RET, t(10;10)(q11;q21) CTNNA3/RET, 

t(10;10)(q11;q21) SIRT1/RET, t(10;10)(q11;q21) 

RUFY2/RET, t(10;10)(q11;q23) DYDC1/RET, 

t(10;10)(q11;q24) SORBS1/RET, 

t(10;10)(q11;q25) ADD3/RET, t(10;10)(q11;q25) 

CCDC186/RET, t(10;10)(q11;q26) DOCK1/RET, 

t(10;11)(q11;q14) PICALM/RET, 

t(10;12)(q11;q13) ERC1/RET, t(10;12)(q11;q23) 

ANKS1B/RET, t(10;12)(q11;q24) CLIP1/RET, 

t(10;14)(q11;q12) TSSK4/RET, t(10;14)(q11;q32) 

CCDC88C/RET, t(10;15)(q11;q21) MYO5C/RET, 

t(10;17)(q11;p11) MPRIP/RET, t(10;17)(q11;q24) 

PRKAR1A/RET, t(10;18)(q11;q21) 

KIAA1468/RET, t(10;19)(q11;q13) LSM14A/RET 

(PMID 22327623, 23150706, 23533264, 27150058, 

28115111, 28851076, 29571998, 29935851, 

30429449, 30579554, 32127187, 32216946, 

Ignatius Ou and Zhu, in press, and data from  Atlas 

Band 10q11).  

mutations in lung adenocarcinoma:   L56M, 

E61K, T75K, R77C, R77L, H103N, L109I, 

X113_splice, K124*, E164K, P181H, E251Q, 

D290N, R297L, T350N, H352P, R355M, Q371K, 

V374M, L375Q, S406R, X421_splice, E428G, 

G453W, D460V, A479S, M484T, R494M, A496G, 

G506W, A510S, A513E, C541F, P560H, P566T, 

D567Y, X587_splice, G588D, G593R, C611S, 

V648I, F719L, P720L, V739F, V755L, V757M, 

M759I, N763K, P766Q, L790*, G798V, A807P, 

R817H, D839N, M848V, Q860P, S891*, E901K, 

S932N, E978Q, E1006*, M1009K, R1013K, 

D1031Y, L1048Pfs*11, E1072K, dispersed through 

all the RET length.  

mutations in lung squamous cell carcinoma, 

according to cBioPortal: R33Kfs*29, A59S, R114S, 

R114H, E235Q, M255I, W324C, E366*, S462L, 

E530*, T564N, G691Vfs*40, A756G, E775Sfs*5, 

F776S, G825C, W856L, W917R, A919S, V934=, 

W942S, P951S, E979Q, R1013T, V1095. 

Breast carcinoma 

The treatment-relevant subtypes of invasive 

carcinoma are based on "ER" (estrogen receptors 

ESR1 and ESR2), "PR" (progesterone receptor 

PGR) and "HER2" (ERBB2) status: ER+, ER-, 

PR+, PR-, HER2+, HER2-. Last, ER-/PR-/HER2- 

are called basal-like or triple negative breast 

cacinoma. 

Oncogenesis 

Tumor-specific expression of GDNF and ARTN is 

relatively frequent and can promote autocrine 

activation of RET downstream signaling. RET is an 

estrogen receptor target gene. IL6 and RET form a 

positive feed-forward loop that stimulates 

migration. ET activation increases migration and 

proliferation of ER+ (estrogen receptor +) breast 

cancer. Elevated RET levels are found not only in 

ER+ tumors, but in other sub-types of human breast 

cancer and correlate with decreased metastasis-free 

survival and poor prognosis in breast cancer 

patients. RET alterations (amplifications/copy 

number gains, mutations or chromosome 

rearrangements) were found in 1.2% in a large 

cohort of 9693 breast cancers. RET amplifications 

were the most commonly observed and mainly 

found in ER- and HER2- breast cancers, followed 

by missense mutations and rearrangements. RET 

missense mutations were more frequently 

associated with ER+ breast cancers. NCOA4/RET 

positive breast cancer responds to cabozantinib. 

Expression is higher in recurrent cancers and is 

correlated with larger tumor size, higher tumor  

stage and reduced metastasis-free and overall 

survival. RET expression in breast cancer is also 

correlated with resistance to endocrine therapies via 

stimulation of the PI3K/AKT/MTOR signaling 

pathway. Tyrosine kinase inhibitors could be useful 

treatments (Gattelli et al., 2013; Morandi et al., 

2013; Hatem et al., 2016; Paratala et al., 2018; 

Mulligan 2019).  

RET mutations:  P117T, S148del, F195L, R330Q, 

R368C, A479T, P537Qfs*101, S518C, A604D, 

C611Y, I625M, C634R/G, F663Lfs*12, V778I, 

A793Pfs*76, G828A, D842H, L846I, I852M, 

M868I, M918T, P951Lfs*12, X934_splice L963V, 

E991*, L1101V, dispersed through all the RET 

length (cBioPortal); and translocations/fusion 

genes:  t(10;12)(q11;q13) ERC1/RET, 

NCOA4/RET (10q11), RASGEF1A/RET (10q11) 

(Stransky et al., 2014; Paratala et al., 208; Rich et 

al., 2019). 

Epithelial ovarian cancer. 

Oncogenesis 

Genomic RET missense mutations was found in 2% 

of patients. These mutations were: D58N, R114H, 

R205S; G248S; A342G, T636M, A680T, G727V, 

G751V, K780N, N879S, N879D, N879S, 

X934_splice, R959W, A1105G, and K1107N. 

Patients with RET alterations had shorter 

progression-free survival than those without RET 

alterations. R693H and A750T mutants of RET 

enhance the signal transduction of RET, the cell 

viability and colony formation of cells, and the 

http://atlasgeneticsoncology.org/Bands/10q11.html
http://atlasgeneticsoncology.org/Bands/10q11.html
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growth of tumor xenografts of ovarian cancer 

(Guan et al., 2020). Translocations/fusion gene:  

NCOA4/RET fusion was found in an ovarian germ 

cell tumour. As a matter of fact, it was a papillary 

thyroid carcinoma arising in struma ovarii (struma 

ovarii originate from ovarian germ cells) 

(Richardson and Mulligan, 2009). KIF5B/RET and 

CCDC6/RET fusion genes were also found (Kato et 

al., 2017; Gao et al., 2018). 

Uterine endometrioid carcinoma 

Endometrioid carcinoma is the most common 

endometrial cancer (75%), and endometrial 

carcinoma represents 95% of uterine corpus 

cancers. It is an epithelial neoplasia. 

Oncogenesis 

Mutations G115S, R133C, K161E, R180*, L196S, 

C197Y, T225M, A241V, E251K, P273T, R313W, 

T317M, R330Q, R348Q, A349V, A373V, A386V, 

S396L, R418*, I422=, T451M, R474W, A487V, 

E511D, V573M, P596H, E623K, A640V, S649L, 

I657S, A672S, A680T, R721W, E768G, A793D, 

R844Q, I858V, S891L, R912W, S936Y, R969W, 

C976Y, E978D, R982H, A999V, E1006D, L1018I, 

A1019V, G1063D, X1063_splice, N1092H, 

L1108*, D1110G, dispersed through all the RET 

length. RET high expression is an unfavorable 

prognostic marker in endometrial cancer (The 

Human Protein Atlas). 

Colorectal cancer 

Disease 

RET fusions have been described in less than 1% of 

colorectal cancers. 

Oncogenesis 

A study on 37 cases determined 4 cases with RET 

mutations/variants: R77C, P270L, G533C, P1047S. 

RET activating mutations identified in colon cancer 

patients increase anchorage-dependent cell 

proliferation and clonogenic cell survival. Variant 

G533C is clearly oncogenic whereas RET variant 

P1047S is not. Cells expressing the RET G533C 

mutant are sensitive to treatment with the RET 

specific inhibitor vandetanib (Mendes Oliveira et 

al., 2018). RET fusions were more frequent in older 

patients, right-sided tumors, MSI-high, RAS and 

BRAF wild-type. Patients with RET fusion-positive 

tumors showed a significantly worse overall 

survival (Pietrantonio et al., 2018). The following 

RET mutations were found: A4E, T48M, G74S, 

R77H, R79W, F126C, R133H, R175H, R177W, 

E235G, V245M, V260*, K288N, A306V, G321R, 

T328S, R360Q, A373V, R418*, R418Q, A432V, 

T451M, Y508H, E511K, R525W, X550_splice, 

D571N, E595K, Q703H, V706M, X712_splice, 

P715S, T742M, T754M, A756V, R770*, K789E, 

R817C, M848V, Q860R, E867A, R912W, P914S, 

P951A, R959W, T1022A, L1016F, T1055A 

(cBioPortal) and translocations/fusion genes were: 

NCOA4/RET (10q11), t(5;10)(q33;q11) 

TNIP1/RET, t(7;10)(q34;q11) TRIM24/RET, 

t(10;10)(q11;q21) CCDC6/RET, t(10;19)(q11;q13) 

SNRNP70/RET and t(10;20)(q11;p12) 

RRBP1/RET (Stransky et al., 2014; Le Rolle et al., 

2015; Kloosterman et al., 2017; Pietrantonio et al., 

2018).  

Aberrant methylation of RET is found in colon 

adenomas and adenocarcinomas, and is associated 

with decreased RET expression, potentially leading 

to inhibition of RET-induced apoptosis of colon 

cancer cells (Li et al., 2019). 

Esophageal adenocarcinoma 

Oncogenesis 

Mutations E61K, Q187K, E238K, C565F, P582L, 

M848I, A1019V. 

Gastric adenocarcinoma 

Oncogenesis 

Mutations G69D, R205G, A279T, R287W, 

R313W, A349V, A432V, N448S, T451M, F466S, 

Q583*, P613L, V706M, R721Q, A793T, R817H, 

R820H, R833C, K907T, E921D, N950Tfs*15, 

E978K, M1009V, N1045S, A1046T. Fusion gene:  

CCDC6/RET. 

Pancreatic ductal adenocarcinoma 

Oncogenesis 

The common polymorphic variant G691S 

(polymorphism found in 30% of normal pancreas, 

allelic frequency of 15%) is over represented in 

pancreatic ductal adenocarcinomas patients (allelic 

frequency of 20%)  

Overexpression of G691S RET increased invasion 

of pancreatic cancer cells (Sawai et al., 2005). 

Activation of RET is capable of inducing invasive 

pancreatic carcinomas. RET mutations in 

pancreatic carcinomas, according to cBioPortal are: 

A4V, R57W, R57Q, V276I, F329L, A756D, 

R844W, R770*, R897*, P1070S. 

Leukemias 

Oncogenesis 

RET expression in acute myeloid leukemia is 

maturation-associated: RET gene expression occurs 

more frequently in AMLs displaying either a 

monocytic (M4/M5) or intermediate-mature 

myeloid phenotype (M2/M3) than in leukemias 

reflecting an earlier stage of myeloid differentiation 

(M0/M1). (Gattei et al., 1998).  

The following RET mutations found in leukemias 

were: G691S in acute myeloid leukemia, G691S, 

R982C in B-lymphoblastic leukemia, L816P in T-

lymphoblastic leukemia, N336T in diffuse large B-

cell lymphoma, G115S in mature B-cell neoplasm 

NOS, X587_splice in angioimmunoblastic T-cell 

lymphoma, G691S in peripheral T-cell lymphoma 
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NOS (BioPortal). and the following translocations:  

a t(6;10)(q27;q11) FGFR1OP/RET and a 

t(10;22)(q11;q11) BCR/RET were found in chronic 

myelomonocytic leukemia and in primary 

myelofibrosis with secondary acute myeloid 

leukemia, and a t(9;10)(q32;q11) FKBP15/RET in 

acute myeloid leukemia NOS (Ballerini et al., 2012; 

Bossi et al., 2014; Gao et al., 2018). 

Bladder urothelial carcinoma 

Oncogenesis 

Mutations V245A, E337K, R348Q, E673K, 

R817C, E818D, E884K, G949Efs*16, F998L, 

A999E, M1009I, N1059D, D1081H, M1109I. 

Papillary renal cell carcinoma 

Oncogenesis 

Cytoplasmic and nuclear expression of RET are 

strong negative predictors of survival in papillary 

renal cell carcinoma (Li et al., 2019). 

Nervous system tumors 

Oncogenesis 

Astrocytoma: Mutations G47S, P182S, G435D, 

A807T, R813W, D1093G.  

Glioblastoma multiforme: Mutations N113=, 

R133H, R133C, R171K, D219N, E289A, S339*, 

N361I, N437I, G546R, R635H, A682V, D892N.  

Neuroblastoma (Peripheral neuroblastic tumours 

of the sympathetic nervous system, mainly found in 

infants and young children): RET was found to be 

highly expressed (Li et al., 2019). 

Head and neck squamous cell 
carcinoma 

Oncogenesis 

Mutations Q44H, V63M, N84S, E284Q, E337V, 

E366*, A373V, A386T, Y483D, C585S, E616del, 

C634Y, K740N, T946A. 

Salivary glands tumors 

Oncogenesis 

t(6;10)(p22;q11) TRIM27/RET, NCOA4/RET 

fusion and t(10;12)(q11;p13) ETV6/RET were 

found in intraductal carcinoma, invasive carcinoma 

and  secretory carcinoma of the salivary glands 

(Skálová et al., 2018a; (Skálová et al., 2018b; 

Guilmette et al., 2018; Skálová et al., 2019). 

Prostate cancer 

Oncogenesis 

RET is expressed in prostate cancer cell lines 

established from advanced prostate cancers. RET is 

also expressed in about 20% of localized prostate 

adenocarcinomas as well as in small cell 

neuroendocrine cancers of the prostate. GDNF is 

expressed by nerves, and nerve fibers secrete 

GDNF in the peritumoral stroma in prostate cancer. 

GDNF/RET signaling can enhance proliferation, 

invasion in prostate cancers (Ban et al. 2017). RET 

was overexpressed in patients with neuroendocrine 

prostate cancer (VanDeusen et al. in press). The 

following RET mutations were found: R57W, 

R67C, T130I, V202M, A281T, V782I, R886W, 

A1046S and translocations/fusion genes were: 

NCOA4/RET fusion (cBioPortal). 

Skin neoplasms 

Oncogenesis 

RET G691S polymorphism is frequent in skin 

melanoma (found in 30% of the cases), particularly 

in desmoplastic subtypes (6%), compared to the 

general population (15-20%). The polymorphism 

was germline in 30% of the patients with 

desmoplastic melanomas and 21% of the patients 

with non-desmoplastic melanoma. RET G691S may 

be a genetic risk factor for the development of 

desmoplastic melanoma (Narita et al., 2009; Barr et 

al., 2012).  

 Mutations in squamous cell carcinoma: 

X25_splice, W85*, E107K, R114H, T120S, 

D547G, P599S, S705F, G736E, Y826F, Y826*, 

E843K, R844W, P957L.  

 Mutations in skin melanoma  are the following: 

X25_splice, A55V, E62K, R67C, W85*, T92I, 

G141S, P155S, E208D, P259Q, X290_splice, 

G308V, E309K, P320S, D322N, W324L, E337K, 

A342V, E366Q, N367S, S379*, R417C, A472V, 

E480K, L481R, D627N, V685I, S696*, D698N, 

W717*, G736R, A741T, F744Y, H745N, 

G823ED839N, P841S, L851I, R873W, R897P, 

K907N, R912Q, S936F, M970I, D1000N, G1032D, 

E1036Q, P1049S, E1058K, D1093N, L1108* 

(cBioPortal).  

 Translocations in  melanomas/ Spitz tumors  

were: t(10;10)(p11;q11) KIF5B/RET and 

t(10;14)(q11;q32) GOLGA5/RET (Wiesner et al., 

2014). 

Soft tissue sarcomas 

Disease 

A t(7;10)(q11;q11) CLIP2/RET, a 

t(10;10)(p12;q11) KIAA1217/RET, and a 

t(10;17)(q11;p13) MYH10/RET were found in 

spindle mesenchymal neoplasms (Davis et al., 

2020). A t(3;10)(q12;q11) TFG/RET and 

NCOA4/RET (10q11) were found in spindle cell 

tumors (Michal et al., 2019; Loong et al., 2020). A 

t(10;22)(q11;q12) TIMP3/RET was found in an 

inflammatory myofibroblastic tumor of the uterus 

(Cheek et al., 2020). A t(10;17)(q11;p13) 

MYH10/RET was found in an infantile 

myofibromatosis (Rosenzweig et al., 2017). A 

t(1;10)(q25;q11) RASAL2/RET was found in high-

grade sarcoma (Zhou et al., 2020). 
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Pediatric cancers 

RET gene fusions have been reported in 20% to 

45% of papillary thyroid carcinomas and less 

frequently in pediatric and young adult patients 

with glioma and various pediatric soft tissue  

tumors. CSGALNACT2/RET fusion gene was 

found in a paediatric high grade glioma (Carvalho 

et al., 2014).  

A VCL/RET fusion gene was found in 7 year-old 

boy with lipofibromatosis, a rare pediatric soft 

tissue tumor (Al-Ibraheemi et al., 2019). Ortiz et 

al., 2020 described 5 patients: 2 cases of medullary 

thyroid cancer, aged 7yrs and 15yrs with RET 

mutation; a 7mth-old baby with infantile 

myofibroma/hemangiopericytoma and a 

MYH10/RET fusion gene; a 2mth-old baby with 

mesoblastic nephroma / infantile fibrosarcoma and 

a SPECC1L/RET fusion gene; and a case of 

lipofibromatosis presenting at birth with a 

NCOA4/RET fusion. Infantile myofibromatosis 

may also harbour RET chromosomal 

rearrangements see above). 

Breakpoints 

Note 

In a series of from 32,989 advanced cancers twenty-

five different breakpoint combinations were 

observed, >95% of which involved intron 11 of 

RET, most commonly fused with intron 15 of 

KIF5B in 80%, intron 1 of CCDC6 in 90%, or 

intron 8 or 10 of NCOA4 in 36 and 57% 

respectively. KIF5B/RET translocations were 

highly specific for non-small cell lung carcinoma 

(Rich et al., 2019). Santoro et al., 2020 present a 

lovely representative scheme of RET and 50 fusion 

partners, indicating the most frequent breakpoint 

sites in partner proteins, and their domains retained 

in the fusion protein. 

 

Figure 6: RET Partners 

 
 

Hybrid Gene Partner Gene  
Last 

Exon  
Breakpoint  RET  

RET First 

Exon  
Breakpoint  Tissue 

TRIM33/RET 5' TRIM33  16 1_2976  3' RET  12 2369_5659  Thyroid (0.7%) 

TRIM27/RET 5' TRIM27  3 1_1104+6742  3' RET  12 2369-1668_5659  Thyroid (1.4%) 

TRIM24/RET 5' TRIM24  9 1_1745  3' RET  12 2369_5659 Thyroid (0.7%) 

PCM1/RET 5' PCM1  29 1_5266  3' RET  12 2369_5659 Thyroid (1.8%) 

HOOK3/RET 5' HOOK3  11 1_1322  3' RET  12 2369_5659  Thyroid (1.8%) 

KIF5B/RET 5' KIF5B  15 1_2183  3' RET  12 2369_5659  
 

 
5' KIF5B  16 1_2372  3' RET  12 2369_5659 Skin 2.6%; Lung (1.5%) 

NCOA4/RET 5' NCOA4  8 1_907  3' RET  12 2369_5659  Thyroid (8%), Lung, Soft tissue 
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CCDC6/RET 5' CCDC6  1 1_535  3' RET  12 2369_5659 Thyroid (12.7%;) Lung 50.5% 

ERC1/RET 5' ERC1 11 1_2338  3' RET  12 2369_5659 Thyroid (1%) 

KTN1/RET 5' KTN1  29 1_2960  3' RET  12 2369_5659 Thyroid (1.4%) 

GOLGA5/RET 5' GOLGA5  7 1_1747  3' RET  12 2369_5659 Skin (2.6%); Thyroid (0.8%) 

PRKAR1A/RET 5' PRKAR1A 7 1_825  3' RET  12 2369_5659 Thyroid (2.7%) 

RELCH/RET 5' RELCH  10 1_1852  3' RET  12 2369_5659 Lung (0.2%) 

TABLE 2: Breakpoints according to Cosmic 
 

1p13 TRIM33/RET PMID 10439047, 11786418, 

14668719 

 6p22 TRIM27/RET PMID 12787916, 14668719 

 7q33 TRIM24/RET PMID 10439047, 11786418, 

14668719 

 8p22 PCM1/RET PMID 10980597, 14668719 

 8p11 HOOK3/RET PMID 14668719, 17639057 

 10p11 KIF5B/RET PMID 22194472, 22327622, 

22327623, 22327624, 22797671, 23150706, 

23418494, 23891510, 24133367, 24158231, 

24346091, 24445538, 24469108, 24481316, 

24700479, 24722163, 24727320, 24810493, 

25348872 

 10q11 NCOA4/RET PMID 8180971, 8187085, 

8290261, 8545102, 8806699, 8806700, 9001272, 

9466701, 9482114, 9516913, 9528832, 9669285, 

9935226, 10083732, 10675479, 10720057, 

10773666, 10946873, 1111778111117782, 

11443191, 11747322, 11786418, 11788677, 

11927965, 12057919, 12720532, ,, 14668719, 

15737050, 15788648, 15876154, 16015630, 

16595592, 16784981, 17464312, 17727338, 

17786355, 18226854, 18393128, 18757433, 

19495791, 19958951, 20012784, 20099311, 

20447069, 20564403, 20703476, 20712653, 

20840674, 20924280, 21048359, 21173509, 

21219595, 21411555, 21498916, 22481925, 

22682753, 22745248, 22895275, 22961909, 

23150706, 23436219, 23806056, 23966419, 

24277231, 24417340, 24503805, 24613930, 

24915144, 25111330, 26971368 

 10q21 CCDC6/RET PMID 2406025, 8545102, 

8634704, 9001272, 9466701, 9508203, 9516913, 

9528832, 9669285, 9935226, 10083732, 10675479, 

10720057, 10773666, 10931090, 10946873,  

10951397, 11117781, 11117782, 11443191, 

11493988, 11747322, 11786418, 11788677, 

11927965, 12057919, 12720532, 14668719, 

15737050, 15788648, 15876154, 16015630, 

16595592, 16784981, 17464312, 17727338, 

17786355, 18226854, 18393128, 18757433, 

19055826, 19495791, 19958951, 20012784, 

20099311, 20447069, 20564403, 20703476, 

20712653, 20840674, 20924280, 21048359, 

21173509, 21219595, 21411555, 21498916, 

22327623,22481925,22682753, 22745248, 

22895275, 22961909, 23150706, 23436219, 

23806056, 23966419, 24133367, 24158231, 

24277231, 24327398, 24346091, 24417340, 

24469108, 24503805, 24613930, 24700479, 

24727320, 24810493, 24915144, 25111330, 

25348872, 26187428, 26971368, 27588476 

 12q13 ERC1/RET PMID 10337992, 14668719, 

15876154 

 14q22 KTN1/RET PMID 10850414, 11786418, 

14668719, 18757433 

 14q32 GOLGA5/RET PMID 9443391, 10675479, 

10773666, 11786418, 14668719, 24445538 

 17q24 PRKAR1A/RET PMID 7519046, 

7678053, 8545102, 9466701, 9516913, 9528832, 

9669285, 9935226, 10083732, 10675479, 

10720057, 10773666, 10946873, 11117781, 

11117782, 11747322, 11786418, 11788677, 

14668719, 15876154, 18393128, 20447069, 

22481925, 24277231 

 18q21 RELCH/RET PMID 24727320 

To be noted 
Treatments with RET inhibitors are promising 

therapeutic targets. 
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